

GEOCHRONOMETRIA 45 (2018): 235–239 DOI 10.1515/geochr-2015-0100

. . . . .



Available online at https://content.sciendo.com/view/journals/geochr/geochr-overview.xml

## ERRATUM

# POST-IR IRSL DATING OF K-FELDSPAR FROM LAST INTERGLACIAL MARINE TERRACE DEPOSITS ON THE KAMIKITA COASTAL PLAIN, NORTHEASTERN JAPAN

### KAZUMI ITO<sup>1</sup>, TORU TAMURA<sup>1</sup> and SUMIKO TSUKAMOTO<sup>2</sup>

<sup>1</sup>Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan <sup>2</sup>Leibniz Institute for Applied Geophysics (LIAG), S3: Geochronology, Hannover, Germany

#### Erratum to: GEOCHRONOMETRIA 44 (2017): 352–365, POST-IR IRSL DATING OF K-FELDSPAR FROM LAST INTERGLACIAL MARINE TERRACE DEPOSITS ON THE KAMIKITA COASTAL PLAIN, NORTHEASTERN JAPAN DOI 10.1515/geochr-2015-0077

The online version of the original article can be found at: http://dx.doi.org/10.1515/geochr-2015-0077

The original version of this article contained incorrect calculation of recombination centre density,  $\rho'$ , and therefore all  $\rho'$  and fading-corrected age were re-calculated. This erratum provides corrected **Table 3**, **Fig. 4**, **Fig. 6** and **Fig. 7**, as well as a list of corrections in the text.

#### LIST OF CORRECTIONS IN THE TEXT

| Page | Section                                                  | Line | Before correction                                                                                                                                                                                                                                                                 | After correction                                                                                                                                                                                                                                                                  |
|------|----------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 352  | Abstract                                                 | 9    |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                   |
| 361  | Discussion                                               | 25   | 126 ± 3 ka                                                                                                                                                                                                                                                                        | 122 ± 3 ka                                                                                                                                                                                                                                                                        |
| 363  | Conclusion                                               | 14   |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                   |
| 361  | Fading-<br>corrected<br>(residual-<br>subtracted)<br>age | 25   | $(2.12 \pm 0.26) \times 10^{-6}$ and $(0.34 \pm 0.75) \times 10^{-6}$ , respectively, for site 1 (gsj13-040, gsj13-039 and gsj14-030), and $(1.76 \pm 0.30) \times 10^{-6}$ and $(-0.02 \pm 0.79) \times 10^{-6}$ , respectively, for site 2 (gsj13-093, gsj13-094 and gsj13-095) | $(1.43 \pm 0.17) \times 10^{-6}$ and $(0.20 \pm 0.51) \times 10^{-6}$ , respectively, for site 1 (gsj13-040, gsj13-039 and gsj14-030), and $(1.17 \pm 0.19) \times 10^{-6}$ and $(-0.13 \pm 0.62) \times 10^{-6}$ , respectively, for site 2 (gsj13-093, gsj13-094 and gsj13-095) |

Corresponding author: K. Ito

© 2018 K. Ito et al. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

e-mail: kazumi-itou@aist.go.jp

ISSN 1897-1695 (online), 1733-8387 (print)

**Table 3.** Results of pIRIR dating using different first IR stimulation temperatures. n is number of aliquots, p' is the dimensionless recombination centre density (Huntley, 2006). Residual dose was De after artificial sunlight bleaching for 3 h except for modern beach sand (gsj14-019) which was bleached for 800 h. Fading correction was performed based on Kars et al. (2008) and Kars and Wallinga (2009). To calculate the uncorrected ages, residual dose of modern beach sand (gsi14-019) was subtracted from D<sub>e</sub> of each sample. D<sub>0</sub> values were calculated based on Wintle and Murray (2006). <sup>a</sup> Terrigenous sediments. <sup>b</sup> If the average g-value of samples from site 2 was lower than zero, fading correction would not performed.

|             |                          |                |                     |                | Fading to                        | est                 |            | Dose reco              | verv tes     | •                     | Fadino-                 | Fadino-                            |            |
|-------------|--------------------------|----------------|---------------------|----------------|----------------------------------|---------------------|------------|------------------------|--------------|-----------------------|-------------------------|------------------------------------|------------|
| Sample      | Measurement<br>procedure | E              | D <sub>e</sub> (Gy) | ۲              | g <sup>2days</sup><br>(%/decade) | p'/10 <sup>-6</sup> | 5          | Dose recovery<br>ratio | . <u>-</u>   | Residual<br>dose (Gy) | uncorrected<br>Age (ka) | corrected<br>Age <sup>b</sup> (ka) | (Gy)       |
| Site 1      |                          |                |                     |                |                                  |                     |            |                        |              |                       |                         |                                    |            |
| gsj13-040ª  | pIRIR <sub>50/290</sub>  | 11             | 96±4                | 11 -           | 2.19±0.09                        | $1.48 \pm 0.06$     | <b>с</b> с | $0.93 \pm 0.09$        | с с          | 10±1                  | 59 ± 5<br>74 · 7        | 81±7<br>70 · 7                     | 361<br>254 |
|             | DIRIR50/290              | 2 @            | 163±12              | -              | C1.0 ± 70.1-                     | 10.0 ± 21.0-        | ი<br>ო     | $1.01 \pm 0.05$        | ,<br>,       | 15±0                  | 14 ± 7<br>99 ± 11       | / 0 ± /<br>139 ± 16                | 413        |
| gsj14-014   | pIRIR200/290             | 7              | $192 \pm 10$        |                |                                  |                     |            | $1.20 \pm 0.10$        |              | 25±1                  | $116 \pm 10$            | $122 \pm 11$                       | 324        |
| aci11.016   | pIRIR50/290              | 8              | 178±10              |                |                                  |                     | с          | $1.06 \pm 0.03$        | с            | 12±0                  | $105 \pm 10$            | $143 \pm 14$                       | 724        |
| CI 0-41 (ch | pIRIR200/290             | 12             | 181±10              |                |                                  |                     | ო          | $0.81 \pm 0.05$        | e            | 22±1                  | $106 \pm 10$            | $112 \pm 11$                       | 392        |
|             | pIRIR50/290              | 28             | $176 \pm 12$        | 28             | $1.65 \pm 0.18$                  | $1.11 \pm 0.12$     | 10         | $1.03 \pm 0.10$        | 9            | $15 \pm 0$            | $103 \pm 10$            | $146 \pm 16$                       | 422        |
|             | pIRIR100/290             | 12             | 191±15              | 12             | $2.22 \pm 0.34$                  | $1.48 \pm 0.22$     | 6          | $1.10 \pm 0.12$        | 9            | 18±2                  | $112 \pm 12$            | $162 \pm 19$                       | 424        |
| gsj13-039   | pIRIR150/290             | 10             | 200±11              | 12             | $1.65 \pm 0.31$                  | $1.10 \pm 0.21$     | ი          | $1.06 \pm 0.12$        | 9            | 23±2                  | $118 \pm 11$            | $154 \pm 15$                       | 451        |
|             | pIRIR200/290             | 19             | 183±22              | 20             | 0.49±0.46                        | $0.30 \pm 0.32$     | 12         | $1.02 \pm 0.11$        | 12           | 27±2                  | $107 \pm 15$            | $113 \pm 16$                       | 370        |
|             | pIRIR <sub>250/290</sub> | 10             | 229±17              | 10             | $-0.26 \pm 1.07$                 | $-0.27 \pm 0.76$    | ი          | $1.08 \pm 0.40$        | 9            | 28±7                  | $134 \pm 14$            |                                    | 248        |
| nci14_031   | pIRIR50/290              | 7              | 163±10              |                |                                  |                     | e          | $1.06 \pm 0.05$        | ო            | 13±1                  | 94±9                    | $132 \pm 13$                       | 410        |
| 100-11-068  | pIRIR200/290             | 6              | $194 \pm 14$        |                |                                  |                     | ო          | $1.01 \pm 0.07$        | ი            | 25±1                  | $112 \pm 12$            | $118 \pm 13$                       | 298        |
| aci11_030   | pIRIR50/290              | ω              | 204±8               | œ              | $2.53\pm0.31$                    | $1.69 \pm 0.21$     | ო          | $1.04 \pm 0.05$        | ო            | $15 \pm 0$            | $116 \pm 9$             | $164 \pm 14$                       | 448        |
| 999-41 66   | pIRIR200/290             | 13             | $214 \pm 15$        | 12             | $1.57 \pm 0.40$                  | $1.03 \pm 0.26$     | ო          | $0.94 \pm 0.17$        | e            | 31±1                  | $120 \pm 12$            | $128 \pm 13$                       | 258        |
| aci11 017   | pIRIR50/290              | œ              | 184±7               |                |                                  |                     | ო          | $1.04 \pm 0.05$        | ო            | 16±1                  | $113 \pm 9$             | $158 \pm 13$                       | 514        |
| 110-4166    | pIRIR200/290             | 12             | $204 \pm 17$        |                |                                  |                     | 3          | $1.02 \pm 0.07$        | 3            | 31±1                  | $125 \pm 14$            | $131 \pm 15$                       | 446        |
| aei11-020   | pIRIR50/290              | œ              | 183±7               |                |                                  |                     | ო          | $0.96 \pm 0.04$        | ო            | $14 \pm 1$            | $107 \pm 9$             | $150 \pm 12$                       | 453        |
| 620-41 [66  | pIRIR200/290             | 10             | 206±17              |                |                                  |                     | с          | $1.01 \pm 0.10$        | ო            | 21±1                  | $120 \pm 13$            | 127 ± 14                           | 339        |
| Site 2      |                          |                |                     |                |                                  |                     |            |                        |              |                       |                         |                                    |            |
| rci13_003a  | pIRIR50/290              | 10             | 95±3                | 10             | $1.25 \pm 0.66$                  | $0.82 \pm 0.45$     | ო          | $1.09 \pm 0.05$        | с            | 11±0                  | $64 \pm 5$              | 82±7                               | 371        |
| 89 10-000   | pIRIR200/290             | 16             | 127 ±6              | 8              | $-1.34 \pm 0.57$                 | $-1.21 \pm 0.49$    | с          | $1.13 \pm 0.10$        | ო            | 21±2                  | 86±8                    |                                    | 229        |
|             | pIRIR50/290              | 17             | 163±8               | 7              | 2.21±0.42                        | $1.48 \pm 0.27$     | ო          | $1.16 \pm 0.07$        | ς<br>Γ       | 19±1                  | $114 \pm 10$            | $150 \pm 14$                       | 461        |
|             | pIRIR100/290             | 9              | $203 \pm 12$        | 9              | $0.55 \pm 0.14$                  | $0.37 \pm 0.09$     | <b>с</b> о | $1.11 \pm 0.05$        | ი ი          | 18±1                  | $142 \pm 13$            | $155 \pm 15$                       | 420        |
| gsj13-094   | pIRIR <sub>150/290</sub> | 9.5            | 210±6               | 9              | $1.50 \pm 0.23$                  | $1.00 \pm 0.15$     | <b>ო</b> ი | $0.98 \pm 0.09$        | ი ი          | 20±1                  | $147 \pm 12$            | 191 ± 15                           | 364        |
|             | pIKIK200/290             | 5              | 193±14              | 71 -           | -0.11±0.74                       | $-0.11 \pm 0.50$    | ς<br>γ     | 1.02 ± 0.07            | ο<br>Γ       | 31±1<br>20.2          | 134 ± 14<br>454 · 27    | 30.001                             | 324        |
|             | DIRIRE0000               | ~              | 205+8               | t              | 10.0H 10.0                       | 00.0 H 00.0         | n (1       | 1.08 ± 0.06            | <b>n</b> m   | 17 + D                | 126 + 10                | 166 + 14                           | 507        |
| gsj13-092   | pIRIR200/290             | - ∞            | 219±7               |                |                                  |                     | ი          | $1.02 \pm 0.07$        | იი           | 31±1                  | $134 \pm 10$            | 1                                  | 287        |
| gsj13-095   | pIRIR <sub>50/290</sub>  | 8 q            | 193±8<br>214±0      | <del>ب</del> ∞ | 1.82±0.12                        | $1.23 \pm 0.08$     | <b>с</b> с | $1.16 \pm 0.07$        | <b>с</b> , с | 12±0                  | 121 ± 10                | 161 ± 13                           | 450        |
|             | DININ200/290             | 2 ~            | 178+4               | 2              | 77.0 704.1                       | 0.0440.0            | <b>,</b> , | 1.07 ± 0.00            | <b>,</b> ,   | 16+1                  | 118+0                   | 155 + 12                           | 532        |
| gsj13-091   | pIRIR200/290             | > <del>⊆</del> | 205±9               |                |                                  |                     | აო         | $1.13 \pm 0.12$        | იი           | 32±2                  | $136 \pm 12$            | 1 - 201                            | 312        |
| dei13 006   | pIRIR50/290              | ∞              | 187 ±20             |                |                                  |                     | e          | $1.06 \pm 0.06$        | e            | 11±1                  | $115 \pm 15$            | 153±21                             | 442        |
| 060-01 (ch  | pIRIR200/290             | 12             | $202 \pm 13$        |                |                                  |                     | 3          | $1.15 \pm 0.06$        | 3            | 27 ± 1                | $123 \pm 12$            |                                    | 339        |
| Site 3      |                          |                |                     |                |                                  |                     |            |                        |              |                       |                         |                                    |            |
|             | pIRIR50/290              | 13             | 16±2                |                |                                  |                     |            |                        | e            | 3±0                   |                         |                                    |            |
|             | pIRIR100/290             | ω,             | 14 ±2               |                |                                  |                     |            |                        |              |                       |                         |                                    |            |
| gsj14-019   | PIKIK150/290             | Σ.             | 11 <del>+</del> 1   |                |                                  |                     |            |                        |              |                       |                         |                                    |            |
|             | pIRIR200/290             | 15             | 17 ± 1              |                |                                  |                     |            |                        | n            | 4±0                   |                         |                                    |            |
|             | pIRIR250/290             | 9              | 26±2                |                |                                  |                     |            |                        |              |                       |                         |                                    | 1          |



**Fig. 4.** Fading test results. (a) Typical results for sample gsj13-039; (b) g-values obtained with different first IR stimulation temperatures for gsj13-039 and gsj13-094. The error bars show one standard error.



**Fig. 6.** (a) Uncorrected and (b) corrected pIRIR ages of gsj13-039 and gsj13-094 obtained with different first IR stimulation temperatures. The error bars show one standard error.



**Fig. 7.** Columnar sections as in Fig. 2. For sites 1 and 2, the fading-uncorrected and -corrected ages of the pIRIR<sub>50/290</sub> and pIRIR<sub>200/290</sub> signals are shown with one standard error. For site 2, the fading corrected ages of pIRIR<sub>200/290</sub> signals were not calculated because the average  $\rho'$  value was lower than zero. For each site, the vertical gray bar shows the expected age range.

#### REFERENCES

- Huntley DJ, 2006. An explanation of the power-law decay of luminescence. Journal of Physics: Condensed Matter 18: 1359–1365, DOI 10.1088/0953-8984/18/4/020.
- Kars RH and Wallinga J, 2009. IRSL dating of K-feldspar: Modeling natural dose response curve to deal with anomalous fading and trap competition. *Radiation Measurements* 44: 594–599, DOI 10.1016/j.radmeas.2009.03.032.
- Kars RH, Wallinga J and Cohen KM, 2008. A new approach towards anomalous fading correction for feldspar IRSL dating test on samples in field saturation. *Radiation Measurements* 43: 786–790, DOI 10.1016/j.radmeas.2008.01.021.
- Wintle AG and Murray AS, 2006. A reviews of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. *Radiation Measurements* 41: 369–391, DOI 10.1016/j.radmeas.2005.11.001.